
The Voice of Luxembourg's Industry

A hydrogen strategy for Luxembourg based on three principles

June 30th 2021

@Fedil_Lux In FEDIL - The Voice of
Luxembourg's Industry

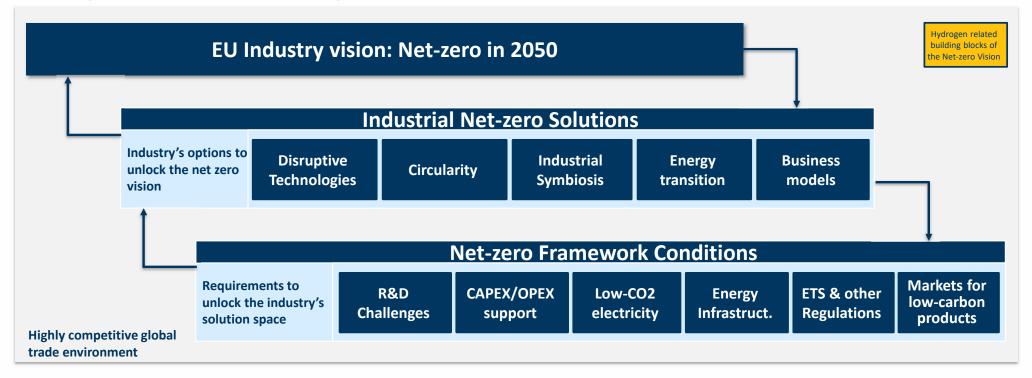
What industrial solutions and framework conditions are needed?

Success of the Net-Zero vision depends on whether framework conditions 1.) support the implementation of industrial net-zero solutions and 2.) protect their competitiveness in global trade.

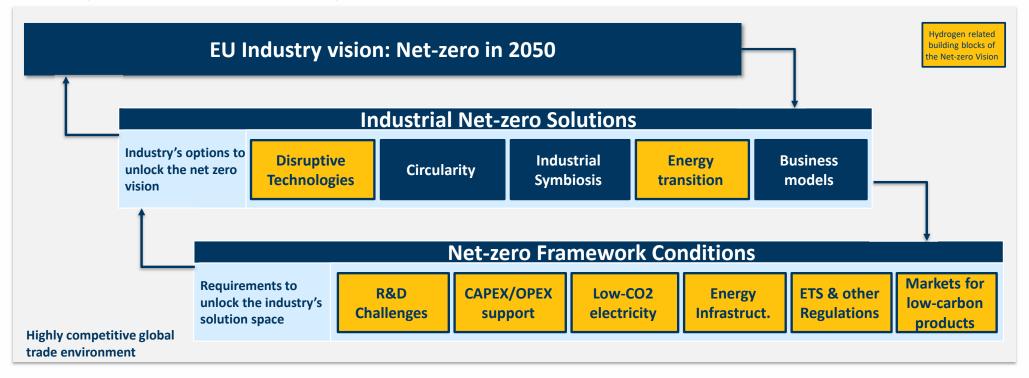
Industrial Net-zero transition challenges Three types of challenges persist

1. Challenges in solution deployment

- a) The development of disruptive, low carbon breakthrough technologies is long, expensive, and many of them have not even reached industrial scale demonstration level.
- **b) Industrial symbiosis, clustering and synergies** with non-industrial sectors across the entire value chain show potential for significant energy savings & material efficiency but are still little developed.
- c) High levels of final electricity demand is expected if industrial low-Co2 technologies are deployed, it may create a virtuous cycle with competitively priced and abundant renewable energy production.
- d) New business models need to emerge in the areas of energy transition and circular economy, new low-carbon markets are needed.


2. Challenges in the business environment

The industrial transition happens in a **highly competitive** and **global** business environment; a **level playing field** is however missing.

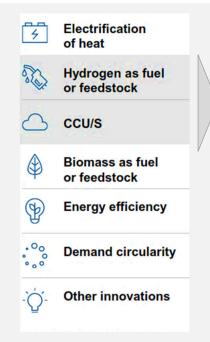

3. Challenges in timing

For most energy intensive companies, 2050 is one (large) investment cycle away from today.

Hydrogen is part of the energy transition

Hydrogen is part of the energy transition

The challenge is huge: Making hydrogen a low carbon fuel affects the majority of the industrial netzero vision's building blocks


The Industry's carbon neutral ambition 2050

The top three potential are in electrification, hydrogen and CCU/S

	Key leve	ers	Potential contribution for industrial CO2 reduction by 2050, %	Example applications
1		lectrification f heat	~35-40%	Electric furnaces, boilers, and heat pumps (e.g., use high- temperature heat pumps in the drying process of ceramics producer)
2		lydrogen as fuel r feedstock	~25-30%	Used as a feedstock or a source of high-temperature heat (e.g., Yara Clean Ammonia unit)
3	<u> </u>	:CU/S	~20-25%	Mainly in industries with high- to median- CO2 concentration streams (e.g. chemicals, steel, cement)
4		liomass as fuel r feedstock	~10-15%	Solid biomass, biogas and biomethane used as a substitute to fossil feedstocks and fuels (e.g., bio-coal for steelmaking at Arcelor Mittal's Ghent plant)
5	(E	nergy efficiency	~5-10%	Upgrades to best available technology (BAT) and use of waste heat (e.g., upgrades at CF Fertilizers to provide high-efficiency steam)
6	.°° D	emand circularity	~1-5 <mark>%</mark>	Recycling of plastics and other chemical products, glass and metals (e.g., Total's recycled polypropylene plants)
7	-`Ċ <u></u> '- C	Other innovations	<mark>~1-5</mark> %	Other technologies such as waste as fuel, inert anode technology in smelting, geothermal heat
	Source: BBR m	embership and industry interviews	•	i i

Constrains of ambitious industrial decarbonisation

Decarbonisation strategies need to preserve industrial competitiveness

- Despite the hype, hydrogen is <u>one of many possible</u> decarbonisation technologies
- Two of the top three decarbonisation technologies (H2 & CCU/S) are new for many industrial applications
- All technologies, and in particular hydrogen and CCU/CCS come with <u>unknown economic and technical</u> <u>constrains</u> and require enormous upfront investments*

Industrial decarbonisation strategies need to strike the right balance between environmental ambitions and industrial competitiveness

Industrial decarbonisation strategies

Call for technology neutrality

Three Technology Neutral Principles:

- Protect against carbon leakage and maintain industry's competitiveness in global trade
- 2. Support low-carbon investment (R&D & CAPEX, OPEX) into industrial scale technologies
- 3. Achieve the climate targets cost-effectively without high additional costs

Scope: EU Emissions Trading Scheme (ETS) Industry

Luxembourg's CO2 emissions 2017 per sector

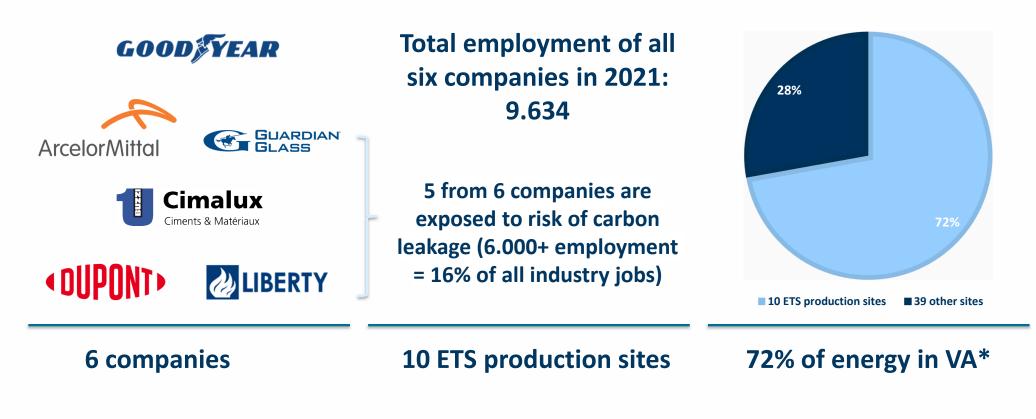
ETS sectors have different CO2 reduction targets than other national sectors

ETS emissions (excluding aviation), 14.58%		Households, 10.90%	
			non-ETS Industry, 3.62% Waste treatment, 0.82%
Agriculture, 6.96%Services and Commerce, 5.70			Energy Production, 1.80%Others, 0.54%

FEDIL

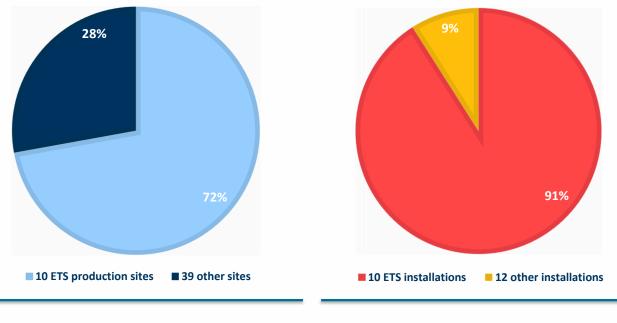
Data of 2017, source: PNEC 9

Three Technology Neutral Principles


For industrial decarbonisation strategies

Scope: Industrial ETS Sector

- 1. Protect against carbon leakage and maintain industry's competitiveness in global trade
- 2. Support low-carbon investment (R&D & CAPEX, OPEX) into industrial scale technologies
- 3. Achieve the climate targets cost-effectively without high additional costs


Luxembourg's main ETS companies (I/II)

Nearly 10 thousand jobs

Luxembourg's main ETS companies (II/II)

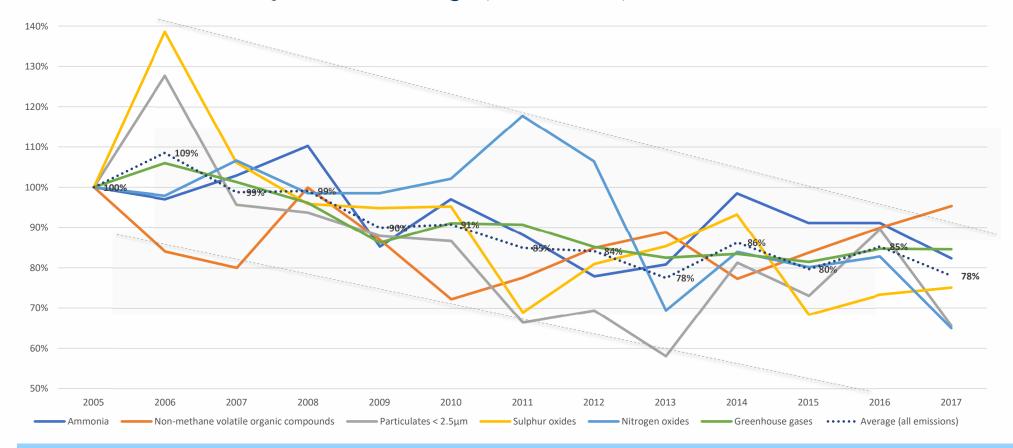
What does the delegation represent?

72% of energy in VA

91% of ETS* emissions

High temperature processes:

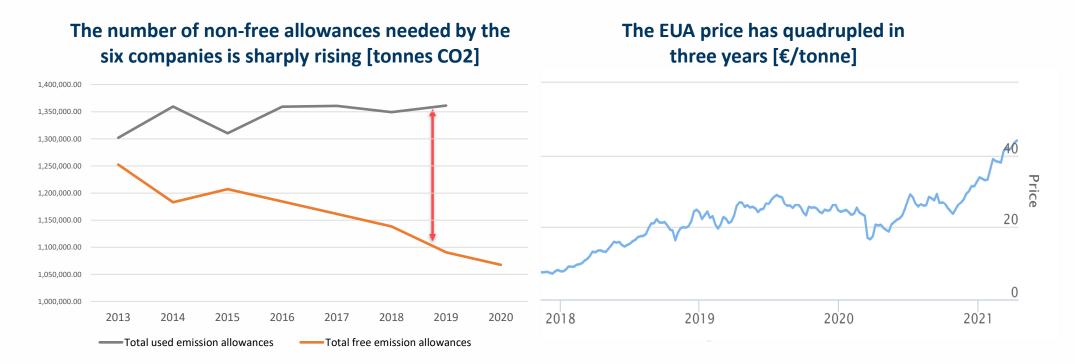
- Glass oven: 1700 °C
- Steel melting furnace: 1600 °C
- Steel rolling mills: 1200 °C
- Clinker rotary kiln: 1450 °C
- Tires and plastics: 150 250 °C


Main emission sources:

- Natural gas combustion
- Primary and alternative fuels
- Limestone decarbonation

Energy consumption & emission sources

Luxembourg's manufacturing industry


Emissions decreased by -22% on average (2005 - 2017)

Emissions measured in Luxembourg's manufacturing industry are steadily decreasing

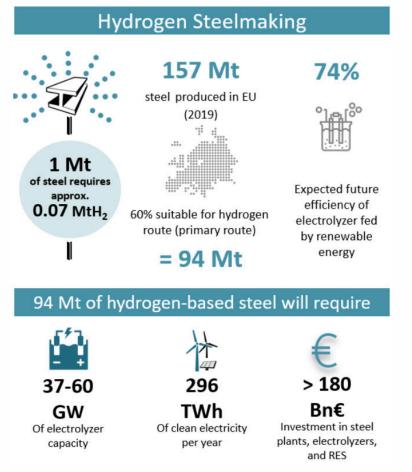
Impact of the ETS system

What direct emission costs does the ETS system entail for Luxembourg's ETS sector?

The EU ETS system is expected to cost at least €15Mio. to the six companies in 2021*. With continuously rising EUA prices the EU EII is increasingly exposed to the risk of carbon leakage

FEDIL

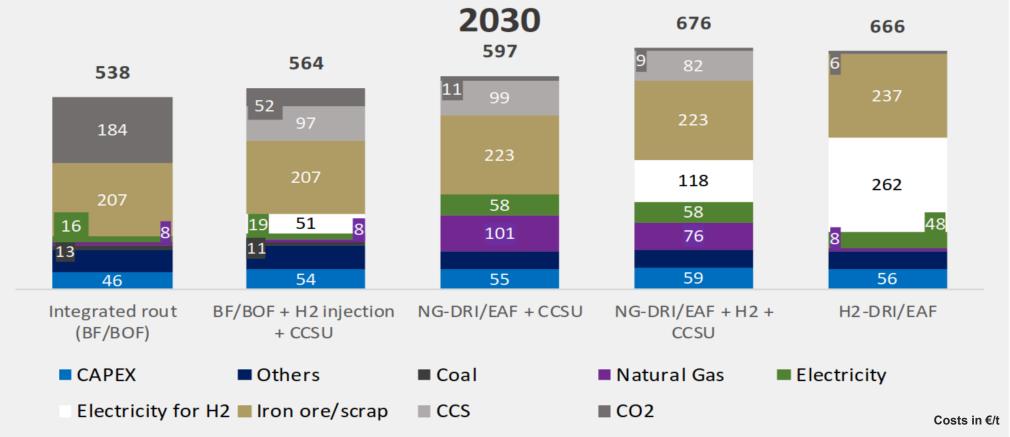
* In 2021, estimated 300.000 non-free allowances are needed @ 50€/tonne 14


EU Energy Intensive Industry's contribution

Greenhouse gas emissions reduced by -36% (1990 - 2015)

Direct CO ₂ -eq emissions	1990	2005	2015	% change 1990-2015	Absolute change (Mt) 1990-2015
	325.1	212	128.4	-61%	-196.7
Fertilizers4 [ammonia+nitric acid] (included in chemicals)	76	66	28	-63%	-48
➡ Steel ⁵	258	232	190	-26%	-68
Cement ⁶	163	157	105	-36%	-58
Refining ^{7, 8}	122	143	137	+12%	+15
Pulp and paper ⁹	39.9	43.2	32.7	-18%	-7.2
Ceramics ¹⁰	26	26	17	-35%	-9
Non-ferrous metals and ferro- alloys ¹¹	52.3	31	17.8	-66%	-34.5
Lime ¹²	25.9	23	19.4	-25%	-6.5
Glass ¹³	28	20	18.1	-35%	-9.9
Total	1,040	887	665	-36%	-375

Climate constrains vs low carbon solutions


Example of green steel making

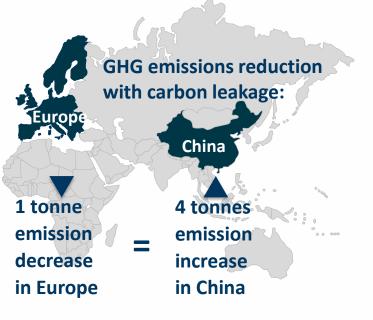
- 94 Mt of steel produced in Europe originates from blast furnace (BF) / basic oxygen furnaces (BOF) is suitable for H2 reduction (DRI) instead of coal
- It would require approx. 37-60GW of electrolyser capacity producing 6.6Mt H2 /year
- In 2030 the EU Hydrogen Strategy aims to have 40GW of electrolyser capacity installed requiring 296TWh of green electricity
- Reference: in 2020 Germany produced a total of 176TWh of green electricity
- The DRI technology is expected to reach commercialisation at large capacities only by 2035

Steel production cost breakdown by production route

Green steel has a huge impact on international competitiveness of EU Steel makers

Innovative steel making routes will increase the end-product costs by up to 24% for EU manufacturers in 2030

FEDIL


The calculation assumes an EU ETS of €84 /ton of CO2 in 2030 for all production routes Source: Carbon-free steel production, EPRS, April 2021 17

Principle 1 (recap)

Avoid carbon leakage by safeguarding the competitiveness of sectors exposed to global competition while they invest in low carbon technologies

Carbon leakage is real: example Aluminium production

- The EU lost a third of its total primary aluminium output between 2002 and 2016
- In 14 years, more than 10 smelters have closed up shop
- EU's primary aluminium production of 3 million tonnes in 2002 is down to 2.1 million in 2017
- During the same time (2002-2017), world aluminium demand increased by 32,2%
- Domestic production only satisfies around 30% of total consumption, making the EU reliant on 70% imports
- In aluminium production, greenhouse Gas (GHG) emissions in China are 4x greater than in Europe

Three Technology Neutral Principles

For industrial decarbonisation strategies

Scope: Industrial ETS Sector

- Protect against carbon leakage and maintain industry's competitiveness in global trade
- 2. Support low-carbon investment (R&D & CAPEX, OPEX) into industrial scale technologies
- 3. Achieve the climate targets cost-effectively without high additional costs

Life cycle thinking (I/III)

A virtuous cycle of decarbonisation lead by constant innovation

Energy efficient buildings and renovation: 80% of EU's flat glass is used in buildings

Flat Glass: A climate neutral EU by 2050 will demand more glass

In buildings, the CO2 emitted to produce an energy efficient double glazing window is offset within 6 to 20 months by its energy savings* Clean vehicles: 15 in the automotive

Clean vehicles: 15% of EU's flat glass is used in the automotive sector

Solar power & energy efficient appliances : 5% of EU's flat glass is used in solar panel & other appliances

- **Circularity**: Glass is an endlessly recyclable material
- **Resilience**: The EU glass processing and transforming industry provides jobs to 110.000 Europeans
- **Local sourcing:** 90% of EU's glass industry's raw material come from Europe

* Windows stay on buildings for an average of 40-50 years; source Glass Europe 20

Life cycle thinking (II/III)

A virtuous cycle of decarbonisation lead by constant innovation

Energy efficient buildings and infrastructures: 35% of EU's steel consumption is used in buildings

Steel:

Clean energy infrastructures & mobility will rely on low emission steel

Europe's steel industry is the most advanced of its kind in the world, it is leading in environmental and climate performance.

Clean vehicles: 19% of EU's steel consumption is used in the automotive sector

Renewable energy engineering: 15% of EU's steel is used in mechanical engineering applications

Circularity: Steel is 100% and infinitely recyclable
 Resilience: The EU steel industry provides directs jobs to 330.000 Europeans (+1.6Mio indirect jobs)

Life cycle thinking (III/III)

Industrial symbiosis, innovation and smart life cycle management for decarbonisation

Cement:

A pivotal material for constructing climate neutrality Foundations of wind turbines, hydro-electric dams, passive housing, tidal power installations and new transport infrastructure all rely on the unique qualities of concrete and cement.

Tyres: Tyres account for 20-30% of vehicle's energy consumption *The European tire industry is leading innovation in its industry.*

Plastics: The focus on end of life issues fall short of plastic's benefit across its entire life cycle *Lightweight, versatile and durable plastics can help save key natural resources, energy and water in strategic sectors.*

Industrial symbiosis:

End of life tires and non-recyclable plastics used as alternative fuels for the cement industry

Principle 2 (recap)

Support low-carbon investment (R&D & CAPEX, OPEX) into industrial scale technologies

The EU Energy intensive industry <u>is pivotal</u> to reach carbon neutrality and to fight against climate change

- The introduction of low carbon fuels is dependent on novel breakthrough technologies at an industrial scale*
- The industry has to carry the burden of the transition:
 - 1. Developing green technologies to an industrial scale;
 - 2. Investing the upgrading of installations;
 - 3. Operating them at higher costs than conventional technologies
- State aid rules and subsidies need to be adapted to match the magnitude of the energy transition's challenge
- Create markets for low carbon products by including green public procurement criteria

FEDIL

* For net-zero 2050, almost half the reductions come from technologies that are currently only at the demonstration or prototype phase, source: IEA: Net Zero by 2050, May 2021 23

Three Technology Neutral Principles

For industrial decarbonisation strategies

Scope: Industrial ETS Sector

- Protect against carbon leakage and maintain industry's competitiveness in global trade
- 2. Support low-carbon investment (R&D & CAPEX, OPEX) into industrial scale technologies
- 3. Achieve the climate targets cost-effectively without high additional costs

Gradually develop energy transition options

Technology neutrally promote most time and cost-effective options as available

Prioritisations is necessary to develop sourcing and transport options time- and costeffectively <u>during a transition phase</u>

Prioritisation of sourcing options

- EU imported low carbon hydrogen with and without CCU(S)
- 2. National hydrogen production from grid electricity with and without guarantees of origin (Pilots)
- 3. Consider alternative national hydrogen production f. ex. from local waste
- 4. Additionality must be introduced gradually and not as a precondition
- 5. Engage in energetically efficient and cost effective sourcing projects with third counties

Prioritisation of transport options

- 1. Participate in transnational hydrogen grid projects to rapidly gain access to interconnection opportunities
- 2. Support transport of all types of hydrogen in the national grid
- 3. Engage in low carbon hydrogen transport infrastructure projects do not restrict to renewables only
- 4. Injection of hydrogen into the gas grid must be considered during the transition phase

Gradual "greening" of options until international market dynamics establishes

Large scale Hydrogen projects in Benelux

Accumulating decarbonisation knowledge gap in Luxbg: Risk of carbon leakage

Country Project* Name **Company Name** 1 Hyport - Phase 1 DEME, Port of Oostende, PMV Existing projects are significantly 2 Hyport - Phase 2 DEME. Port of Oostende, PMV underestimated due to (i) technology 3 Hyoffwind Eoly (Colruyt), Parkwind, Fluxys 4 Ijmuiden Tata Steel, Nouryon, Port of Amsterdam maturity (early-stage projects) and (ii) lack 5 Delfzjil Project Phase 1 Nouryon, Gasunie of public information 6 Delfzjil Project Phase 2 Nouryon, Gasunie DSL-1 (H2 supplied by Delfziil Phase 2) SkyNRG, KLM Royal Dutch Airlines, SHV Energy and Compared to other Benelux and EU Amsterdam Airport Schiphol 8 Magnum (H2M) Vattenfall, Equinor, Gasunie Member States: No major Hydrogen • Luxembourg is about to accumulate a 12 3 9 12 18 huge knowledge gas in t 9 NortH2 Shell, Gasunie, Groningen Seaports, Equinor, RWE 10 RWE Eemshaven power station RWE, innogy HyNetherlands Engie, Gasunie 12 SinneWetterstof Hydrogen Pilot Project Alliander, BayWa re 13 PosHYdon pilot Gasunie, Poseidon Energy, TAQA, EBN B.V., NAM, NOGAT B.V., Noordgastransport B.V, Nextstep, TNO 14 H2 backbone Port of Rotterdam Port of Rotterdam, Gasunie molecules and CCU technologies H-Vision Phase 1 Deltalings, TNO, Air Liquide, BP, EBN, Engie, Equinor, Gasunie, GasTerra, Linde, OCI Nitrogen, Port of Merely two Luxembourg companies Rotterdam, Shell, TAQA, Uniper and Koninklijke Vopak 16 Multiphly CEA, Neste, Paul Wurth, Engie participating in all identified projects: 17 Tweede Maasvlakte at port of Rotterdam Shell, Eneco No major projects in Arcelor Mittal (CCU), Paul Wurth (H2) Luxembourg to-date 18 H2-Fifty BP, Nouryon, Port of Rotterdam 19 Sluiskil Ammonia plant Orsted, Yara 20 Hystock Gasunie

Creating no viable decarbonisation options via Hydrogen or CCU (next slide) techn. for sectors as prominent in Luxembourg as cement, glass and steel exposes them to the risks of investment- and carbon leakage

*Including large-scale projects with focus on infrastructure for heavy industry, but excl. smaller-scale research initiatives (e.g., lab R&D by individual players) or non-industrial end-uses (e.g, fuel cell-based mobility) Diagram source: <u>Benelux Business Roundtable, April 2021: How Benelux's industry and power sector could become carbon neutral by 2050</u>

Overview of large-scale CCS projects in the Benelux Currently ongoing large-scale projects

🛱 Carl	bon capture ち	រំក្ម្ម Transport (pipeline)) 🚉 Transport (shij	p) 🖒 Use	Offshore storage
Project		Scope	Capture Capacity	# CO2 suppliers	Source of supply
1 =	Porthos	£ [™] ™ &	2.5 Mtpa (2023) 10 Mtpa (optional phase 2)	4	Air Liquide, Air Products, Shell and ExxonMobil
2 🗖	Athos ¹	£் தே தே பு	4-5 Mtpa (2030)	1	Tata Steel
3 🗖	Aramis	B	N.A.	N.A.	N.A.
4	H-Vision	ि∰ ि ▲ ①	2.2 Mtpa (2026) 4.3 Mtpa (2031)	5	Shell, ExxonMobil, BP, Equinor, Air Liquide
5	Carbon Connect Delt	🛱 🖓 🔛 a	1 Mtpa (2023) 6.5 Mtpa (2030)	5	Arcelor Mittal, Dow, Yara, Zeeland Refinery and PZEM
6	Antwerp@C		~9 Mtpa (2030)	6	Air Liquide, BASF, Borealis, ExxonMobil, Ineos
1 Includes (the Everent project from	Total capacit	y >20Mtpa ² by 2030	nos project 2. Assu	and Total)

FEDIL

Source: Benelux Business Roundtable, April 2021: How Benelux's industry and power sector could become carbon neutral by 2050

27

Pilot & industrial scale CCU/S projects in the Benelux

Currently ongoing pilots and industrial-scale demonstrators

🛱 Car	bon capture ^ቺ դე	a Transport (pipeline) 🚉 Transport (ship) 🖧 Use 🛱 Offshore storage				
Project		Scope	Key companies	CO2 source	CO2-based product	Start- up date
1	Basic Oxygen Furnace 2 Urea	E III III	Arcelor Mittal, TNO	Steel (0.1 mtpa)	Urea	
2	Renewable Jet Fuel from air	E P C	EDL	Direct air capture	E-kerosene (~300t p.a.)	
3	North -C- Methanol	∰ீ ோ ப்	Arcelor Mittal, Engie, Fluxys	Steel (0.07 mtpa)	E-methanol (~45,000t p.a.)	2024
4	Power-to- Methanol	fi ta (j	Engie, Fluxys, INOVYN		E-methanol (~8,000t p.a.)	2022
5	Steelanol	∰ீ ோ ப்	Arcelor, Primetals, Lanzatech	Steel (0.2 mtpa)	Bio-ethanol (~65,000t p.a.)	2022
6	Leilac project¹		Heidelberg Cement	Lime (0.02 mtpa)		2019
7	Colombus	fi the C	Engie, John Cockerill, Carmeuse	Lime (0.02 mtpa)	E-methane	2025

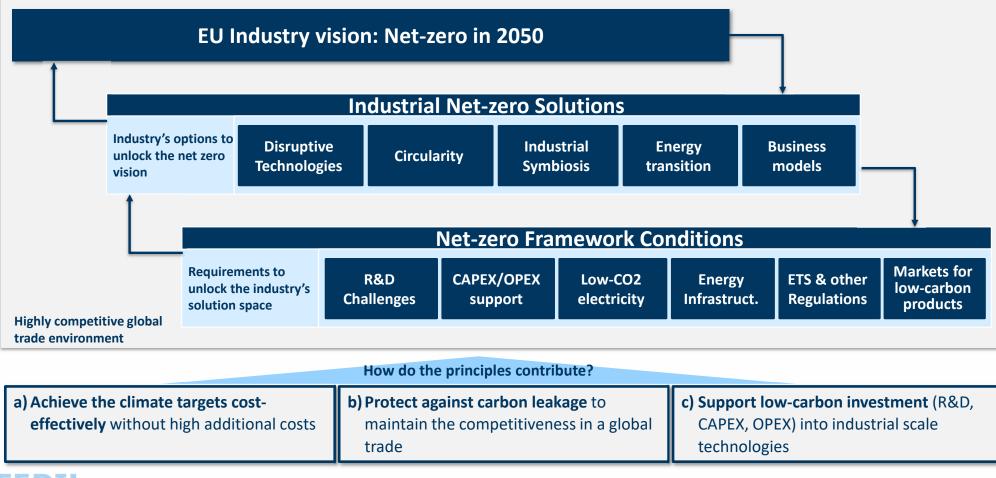
1. The Leilac project focuses on improving capture technology for CO2 produced during the lime & cement production process. Captured CO2 is released into the atmosphere

Principle 3 (recap)

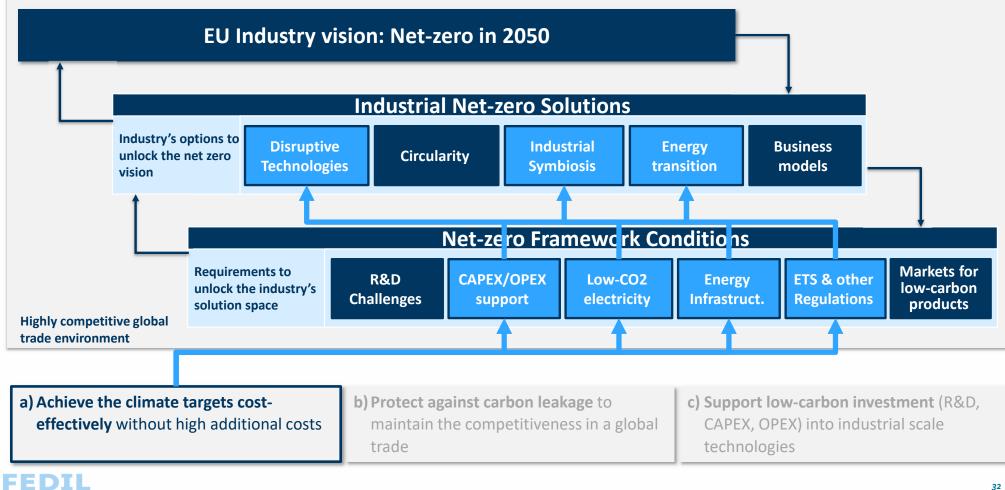
Achieve the climate targets cost-effectively without high additional costs

- Gradually transit towards green hydrogen
- Avoid the creation of a decarbonization knowledge gaps
- Intensify cooperation with Benelux partners:
 - Develop an open-access cross border infrastructure for the import of green energy of sufficient scale and scope
 - Develop options for the transport of CO2
 - Deepen regulatory convergence
 - Improve access to public and private funding to support realistic business cases
 - Increase of social acceptance for projects related the energy transition

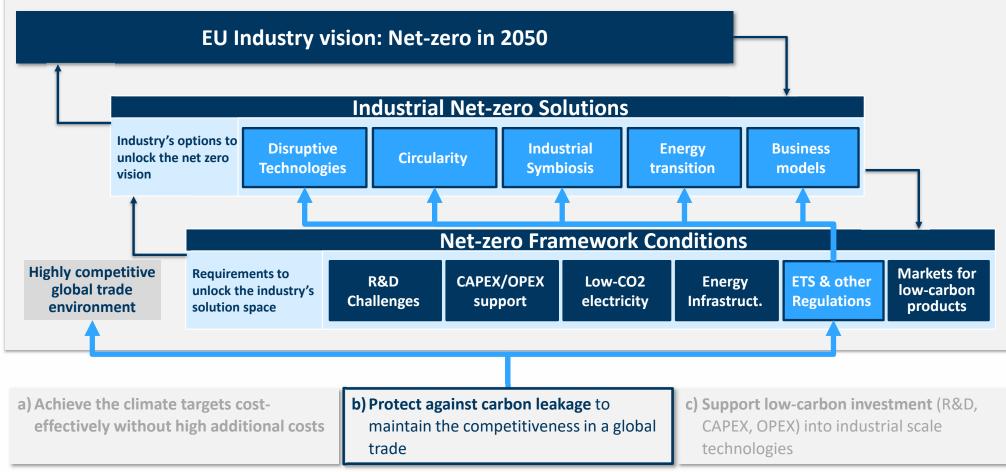
Industry's net-zero 2050 vision

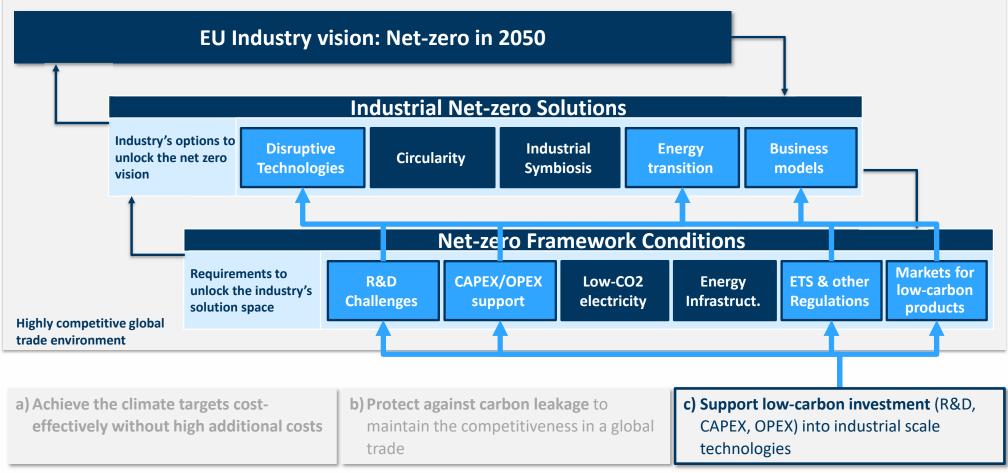

How do the principles contribute?

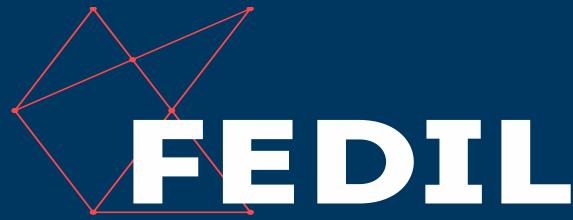
Scope: Industrial ETS Sector


- Protect against carbon leakage and maintain industry's competitiveness in global trade
- 2. Support low-carbon investment (R&D & CAPEX, OPEX) into industrial scale technologies
- 3. Achieve the climate targets cost-effectively without high additional costs

How do the principles contribute?


Principles each tackle different framework conditions opening options for the Industry


How do our proposals contribute (I/III)?



How do our proposals contribute (II/III)?

How do our proposals contribute (III/III)?

The Voice of Luxembourg's Industry

7, rue Alcide de Gasperi Luxembourg-Kirchberg Boîte postale 1304 L-1013 Luxembourg fedil@fedil.lu tel: +352 43 53 66-1 fax: +352 43 23 28 www.fedil.lu